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Discrete-to-continuum simulation approach to polymer chain systems:
Subdiffusion, segregation, and chain folding
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A discrete-to-continuum approach is introduced to study the static and dynamic properties of polymer chain
systems with a bead-spring chain model in two dimensions. A finitely extensible nonlinear elastic potential is
used for the bond between the consecutive beads with the Lennard-Jones~LJ! potential with smaller (Rc

521/6s50.95) and larger (Rc52.5s52.1) values of the upper cutoff for the nonbonding interaction among
the neighboring beads. We find that chains segregate at temperatureT51.0 with Rc52.1 and remain deseg-
regated withRc50.95. At low temperature (T50.2), chains become folded, in a ribbonlike conformation,
unlike random and self-avoiding walk conformations atT51.0. The power-law dependence of the rms dis-
placements of the center of mass (Rc.m.) of the chains and their center node (Rcn) with time are nonuniversal,
with the range of exponentsn1.0.4520.25 andn2.0.3020.10, respectively. Both radius of gyration (Rg)
and average bond length (^ l &) decrease on increasing the range of interaction (Rc), consistent with the
extended state in good solvent to collapsed state in poor solvent description of the polymer chains. Analysis of
the radial distribution function supports these observations.@S1063-651X~98!11205-9#

PACS number~s!: 36.20.Ey, 02.70.Lq, 02.70.Ns, 83.10.Nn
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I. INTRODUCTION

Development of molecular simulations using Monte Ca
and molecular dynamics methods, and their applications@1–
6# to a variety of complex systems, have become a subjec
considerable interest in teaching and research. In partic
computer simulation modeling has become an important
to study the statics and dynamics of polymer chains in rec
years@5,6#. One of the major problems in such simulations
the long relaxation time to reach steady-state and equilibr
configurations particularly for chains in melt, complex mi
tures, and gel matrix. For example, the motion of a monom
~node! of a coarse-grained polymer chain in melts exhib
power laws,R2;tn with different power-law exponents (n
51, 1/2, 1/4, 1/2, 1) in various short to long time regim
@7,8#. Note that even the short time regime associated w
Rouse-to-reptation crossover in polymer dynamics ta
relatively large computational time steps@9–15#. It is rather
difficult to cover all time regimes due to limitations on th
computational resources. Extensive simulations@5,6,9# are
performed to examine the onset of reptation from short ti
Rouse dynamics@16# of a polymer chain in melt.

There are two main simulation approaches@5,6,9# to study
the statics and dynamics of polymer chains, i.e., lattice
off-lattice simulations to address appropriate questions. O
lattice simulations in a coarse-grained chain model deal w
the motion of each monomer by a small amount. As a res
it is possible to take into account short time dynamics w
good accuracy. It takes a considerably large number of t
steps to study the long time behavior in a complex polym
melt. Using the discrete lattice approach, on the other ha
one may implement various dynamics, i.e., kink-jum
crank-shaft, and their combinations at various length sca
slithering-snake~‘‘reptation’’ ! dynamics@5,6,9,17–20#, etc.,
571063-651X/98/57~5!/5802~9!/$15.00
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with relative ease. It is therefore possible to study the lo
time behavior with the help of appropriate dynamics. O
should, however, be careful in implementing different loc
dynamics so as not to eliminate the desired physical pro
ties arising from a short time local dynamics and introdu
artificial effects. For example, if the ‘‘slithering-snake~rep-
tation!’’ dynamics is used in conjunction with kink jump an
crank shaft, then the reptation dynamics dominates over
short time Rouse behavior. Off-lattice simulations seem
propriate for short time local properties while the accelera
discrete simulation approaches seem to provide overall e
librium properties. Since the discrete lattice simulations
generally more efficient for a long time~equilibrium! scale
while the continuum~off-lattice! simulations are relatively
slow but desirable to take into account the physics from
short time regime, we attempt to combine these method
order to capture the appropriate effects.

II. METHOD AND MODEL

One of the common procedures in polymer simulatio
involves equilibrating the sample of the polymer chain a
solvent and studying the statics and dynamics evolving fr
their statistical ensembles in which the constituents~chains!
are in constant movement exploring their conformatio
phase space. How soon the system approaches its ste
state or equilibrium configurations depends on how fast
constituents are exploring their phase space. In complex
tems like melts, movement of chain segments is very of
too slow to reach equilibrium configurations in a desirab
time. One then implements various dynamics to accele
the process. The evolution of the system in statistical ph
space could be thought of as a stirring process in which
may consider appropriate stirring pathways to bring su
complex system close to a desirable state in phase spac
5802 © 1998 The American Physical Society
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57 5803DISCRETE-TO-CONTINUUM SIMULATION APPROACH . . .
simulations, stirring of solution could be achieved in tw
steps: large scale stirring~global mixing–equilibration! by
lattice simulation followed by small scale stirring~local
mixing–equilibration! by off-lattice simulations.

To illustrate this method, we consider a two-dimensio
system of sizeL3L as an example. In order to impleme
the lattice simulation we treat this space as a square la
with unit lattice constant. Polymer chains, each of lengthLc
consisting ofLc11 nodes connected by unit bond leng
compatible with the lattice structure, are placed regularly
the lattice. Placing chains regularly in the beginning does
appear efficient at first glance, since we eventually like
have a randomly mixed configuration. However, we wou
be able to fill the lattice with arbitrary polymer concentr
tions ~up to nearlyp51), which could otherwise be ver
time consuming in a random sequential process of introd
ing the chains in the system. Further in such a random
quential process of preparing the samples, the configurat
of chains placed later are highly restricted~due to the pres-
ence of surrounding chains!, which may result in biased
undesirable metastable states. A homogeneous distributio
chains may reduce the local inhomogeneity in the ini
chain distribution. There could be other variant methods
introduce the chains for our system. After placing the cha
we reptate the chains for sufficiently long time steps to m
the system well so as to reduce or eliminate their memo
One may incorporate other dynamics such as kink jump
crank shaft, and may even involve temperature with app
priate interaction, however, we will restrict ourselves here
reptation dynamics alone in preparing the sample.

Reptating the chains accelerates the equilibration proc
We would like to mention that reptation alone could lead
certain metastabilities as pointed out by several researc
@19,20#. However, the probability of such metastability
relatively low. Moreover, in our method, we implement oth
procedures~see below! that may help bring the chains out o
such metastablity.

Now, we switch off the lattice structure and turn on t
off-lattice simulation. We consider a coarse-grained be
spring model@21# for the polymer chain in which a finitely
extensible nonlinear elastic~FENE! potential (UF) describes
the bonded interaction between the consecutive beads o
chain, i.e.,

UF52~k/2!R2ln$12@~ l 2 l 0!/R#2%, ~1!

where l is the bond length,R5 l max2 l 0. l 0 , l max, and l min
are the equilibrium value of the effective bond length, and
maximum and minimum values, respectively, such thatl min
, l , l max and l min52l 02 l max. We use l max51, l min
50.4, and l 050.7. The associated spring constantk is
fixed at k510. Next, we scale the bond lengthl from its
lattice value of one to a desirable value~closer to equilibrium
bond length in off-lattice model, i.e.,^ l 0&;0.7. The lattice is
also scaled simultaneously so that the chains are hom
neously distributed throughout the lattice. In addition w
consider a Lennard-Jones~LJ! nonbonding interaction@1,2#
between the neighboring beads except consecutive bo
beads which are held together by the FENE potential. The
interaction between two nodesi and j separated byr i j is
described by
l
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r i j
D 6G , ~2!

where we select the parameterse51.0, s50.85 in arbitrary
unit. Spatial quantities such as rms displacements and ra
of gyration are measured in arbitrary units. A typical var
tion of these potentials is shown in Fig. 1.

Using the Metropolis Monte Carlo algorithm@1–4# we
attempt to move each bead by a small amount@dr
5(dx,dy)#: find the energy (U1) of the bead in its original
position and in the new position (U2), evaluate the differ-
encedU5U22U1, and accept the move with a Boltzman
distribution exp(2dU/kBT). Attempting to move each bea
once is defined as one Monte Carlo step~MCS!. We move
each node for a sufficiently long time to equilibrate the s
tem before beginning to take the measurements. The num
of time steps needed to achieve equilibration is now redu
considerably with reptation of chains in discrete lattice sp
than without it. We would like to point out that such a
athermal reptation~preinitial stirring! corresponds to a high
temperature equilibration. Switching to an off-lattice therm
simulation at a temperature (T) then implies a quenching
the depth~drop in temperature! of which depends onT. In
our simulation~see below!, we have tried to approach a
equilibrium–steady state where the temporal variation
bond length and radius of gyration approaches their sta
values. We have not identified the theta temperature in
study although we have studied some effect of temperat
In the following we present some of our data for the conf
mation and dynamics of chains.

III. RESULTS

Most simulations are performed on a 1003100 space, al-
though different sample sizes were also used to check
severe finite size effects. Low (T50.20) and high (T51.0)
temperatures~in unit of e/kB with the Boltzmann constan
kB) are considered to see the contrast between the evolu
of stable conformations and dynamics, with two upper c
offs (Rc50.95, 2.1) of the nonbonding potentials on chai

FIG. 1. Plot of FENE potential ~dashed line! ~for K
510.0, l min50.4, l max51.0, l 050.7) and LJ potential (e51.0,s
50.85) vs distance.
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FIG. 2. Snapshots of chains of lengthLc580 with the upper cutoffRc52.1 of the LJ potential atT51.0 andp50.4 at various time steps
~a! just after large scale stirring~reptation on discrete lattice fort 5 40 000 steps!, ~b! initial configuration after a small-scale mixing~node
movement fort 5 20 000 steps! and thereafter att5210 ~c!, t5216 ~d!, t5220 ~e! steps.
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57 5805DISCRETE-TO-CONTINUUM SIMULATION APPROACH . . .
of lengthLc520, 40, 60, and 80 at polymer concentratio
p50.05, 0.2, and 0.4. We have used 8–10 independ
samples~different initial configurations! for each set of data

A. Segregation, desegregation, and chain folding

Distribution of polymer chains and their conformations
various stages of their evolution are studied by visual insp
tion of the snapshots. Figure 2 shows a typical evolution
p50.4 andT51.0 with Rc52.1. From Fig. 2~a!, we see that
the chains are uniformly distributed throughout the syst
and their conformations appear to be random with exclu
volume constraints@self-avoiding walk~SAW!#. The lattice
constraints are visible with a constant discrete bond len
and their orientations constrained to the square lattice. W
a small local mixing~switching on the off-lattice simulation!
@Fig. 2~b!#, the lattice discreteness of the chains’ conform
tions reduces considerably. After 1024 MCS@Fig. 2~c!#,
chains begin to segregate and form aggregates as the
actions begin to affect their mobility. At 65 536 step@Fig.

FIG. 3. Snapshots of the chains att5220 steps forLc580 ~a!
andLc540 ~b! at p50.4, T50.2, with upper cutoffRc52.1.
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2~d!# the segregations of chains into clusters of chain agg
gates becomes pronounced, which finally develops i
larger aggregates of chains at 1 048 576 step@Fig. 2~e!#.
Note that the growth of the clusters~aggregates! becomes
very slow now, as the mobility of chains becomes very lo
~see below!. Chains are bounded together by the nonbond
~LJ! interaction, which is dominant as the chain nodes
proach closer within the attractive cutoff range (Rc52.1) at
this temperature (T51.0). Such a segregation of chains
two dimensions has been studied before@5,9#.

A similar simulation at a low temperature (T50.2) shows
a spectacular evolution of the chains’ distribution and th
conformations shown in Fig. 3. Note the contrast and diff
ence in conformation of chains at low temperature~Fig. 3!
from that at temperatureT51.0 @Fig. 2~e!# at the same time
starting from the same initial configuration in a discrete s
ring state@Fig. 2~a!#. Chains are folded in a rather uniform
fashion unless hindered by clustering. We are not aware
such conformational change, i.e., from random conform
tions atT51.0 to folded coil~ribbonlike! conformations in

FIG. 4. Snapshots of the chains with the upper cutoffRc

50.95 forLc580, p50.4 atT51.0 ~a! and 0.2~b!.
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FIG. 5. RMS displacement for the center of mass of the chains~c.m.! and their center nodes~cn! vs time on a log-log scale forLc

540 andp50.4, with Rc52.1 ~open! and 0.95~filled!.
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two dimension at low temperatures (T50.2). We further
note that such a spectacular conformational phase trans
persists even with smaller chain sizes@compare Figs. 3~a!
and 3~b!#.

As mentioned above, we have carried out simulations a
with a relatively small value of the upper interaction cuto
i.e., Rc521/6s50.95 of the LJ interaction. Such a shor
range interaction brings our model closer to chains of be
with only hard-core~excluded volume sphere! interaction.
The above characteristic conformational phase transi
from random conformation to folded-coil conformation o
lowering the temperature fromT51.0 toT50.2 during seg-
regation is also observed here~see Fig. 4!. However, with the
lower range of interaction at the low temperature, the size
the coil, i.e., the amplitude of folding, has reduced consid
ably. The ramification in the random conformations is mo
pronounced at a smaller scale.

Unlike the chains with relatively longer range interactio
@i.e., with Rc52.1, Fig. 2~e!#, we do not observe segregatio
of chains with shorter range of interaction@Rc50.95, Fig.
4~a!#. Segregation of chains and formation of stable agg
gates@Fig. 2~e!# thus depends on two factors:~i! mobility
~which is higher at higher temperature!, and~ii ! the interac-
tions ~the longer the range of attractive LJ interaction and
magnitude, the more stable is the aggregate!. Despite the
mobility at T51.0, the range of interactionRc50.95 is too
small to form an aggregate within our observation time.

B. RMS displacements

During the structural evolution we calculate the rms d
placement of the center node (Rcn) and the center of mas
(Rc.m.) of the chain periodically. The average rms displac
ment per chain at timet is defined as

Rrms~ t !5A^x2~ t !&1^y2~ t !&, ~3!

where
on
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1
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(

m51
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2 , ~4!

where x(t) and y(t) are thex and y components of the
displacement of chains at timet, nc is the number of chains
andns is the number of samples. Attempts are made to fi
the leading power-law dependence of these displacem
with time described by exponentsn1 andn2, i.e.,

Rc.m.;tn1, ~5!

Rcn;tn2. ~6!

A typical variation of rms displacements with time is pr
sented in Fig. 5. The visual inspection of these plots sugg
a relatively good power-law dependence in the long ti
regime. Chains have traveled a distance of the order of t
radius of gyration and larger. The rms displacement for
center of mass~c.m.! of the chains is normalized byLc ~the
size of the chain!; therefore it appears smaller than corr
sponding values for the center node~cn!. In fact, it is larger.
The slope of the least square fit of these data points m
provide an estimate of the exponentsn1 and n2. However,
one may resort to a better resolution by evaluating the slo
at regular intervals of time. In other words, we may evalu
the slopes of a set of consecutive data points~say 2, 3, or
more! throughout the interval to see the trend. Figure
shows a typical plot of these power-law exponents ver
time for Lc540 chains atp50.40. Obviously, the magnitude
of the exponents is fluctuating and the fluctuations could
improved by increasing the number of statistics as we h
observed. Nevertheless, it is possible to analyze the dyn
ics of polymer chains and their nodes, and find the trend
the system evolves. From these data~Fig. 6!, we see a dis-
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tinct difference in the magnitude ofn1, the power-law expo-
nent for the center of mass of the chains, at low and h
temperatures (T50.20, 1.0) in long time regime. For ex
ample, with the range of interactionRc52.1, the magnitude
of n1 drops from about 0.4 atT51.0 to about 0.30 atT
50.2. The difference in the magnitude ofn1 increases (n1
.0.45 at T51.0 to n1.0.25 at T50.2) with the smaller
range of interaction,Rc50.95. Although the data point
seem to have large fluctuations at this scale, the differenc
magnitude ofn1 is larger than the range of fluctuations,
measure of the error bar.

Thus, we see that the temperature affects the power
behavior of the center of mass of the chains in an impor
fashion leading to a nonuniversal power law~exponent!. The
range of interaction also seems to affect the magnitude of
power-law exponents. However, the difference in magnitu
of n1 due to range of interaction is small and seems l
reliable due to lack of adequate quality data. The effect

FIG. 6. Variation of the instantaneous exponent for the r
displacement of the center of mass~a! and center node~b! for Lc

540,p50.4 with Rc52.1 ~open! and 0.95~filled!.
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temperature in controlling the power-law behavior of t
center node of the chains is also quite clear:n2.0.3 at
T51.0 drops down ton2.0.10 atT50.2 @see Fig. 6~b!#.
However, the effect of the range of interaction on the pow
law behavior of the center node~i.e.,Rcn;tn2) is not as clear
again due to lack of sufficient data.

In the following we describe some other estimates of
exponents (n1 and n2) as examples to gain insight into th
range of error bars and effects of chain length and polym
concentration. With the upper cutoff,Rc52.1, in the short
time regime, we findn1.0.4560.07 andn2.0.3060.06 at
T51.0 for Lc580 chains atp50.2. For Lc540, at T
50.2, n1.0.4 ~short time! to n1.1/4 ~long time! and n2
.1/4 ton2.1/10. ForLc580, T50.2, n1.0.4 ~short time!
to 0.3~long time!, andn2.0.4 ~short time! to 0.1~long time!
with a continuous decay. The values of these expone
(n1 ,n2) in the short time regime are given only to see t

s

FIG. 7. Typical evolution of the radius of gyration (Rg) with
time for Lc540, T51.0 with Rc52.1 ~open! and 0.95~filled!.

FIG. 8. Variation ofRg vs Lc on a log-log scale for chains a
p50.05, 0.2,T50.2, 1.0 withRc52.1 ~open! and 0.95~filled!.
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5808 57GRACE M. FOO AND R. B. PANDEY
trend, and not to confuse with the chain dynamics in
asymptotic power-law regime since the system is not in eq
librium in short time regimes. Small values of the expone
in long time, however, implies that the chains and nodes
relatively less mobile as the segregation leads to stabl
metastable aggregates of clusters atT51.0. This is consis-
tent with our visual analysis of the evolution of chains co
formation and their aggregates in the preceding section.

C. Radius of gyration and bond length

A typical evolution of the radius of gyration (Rg) in time
is shown in Fig. 7. Note thatRg has approached to a consta
~saturated! value in the long time regime. This is an indic
tion that our system has reached a steady-state–equilib
as far as the conformation of chains is concerned. We
that the equilibrium value ofRg depends on the value o
upper interaction cutoff (Rc). At T51.0 with Rc52.1, Rg
seems to increase on increasingp from 0.05 to 0.4. The
radius of gyration appears to be less sensitive to poly
concentration with the smaller interaction cutoff (Rc50.95);
however, our data show a decreasing trend ofRg with in-
creasingp. Thus, the polymer concentration affects the ma
nitude ofRg differently with the smaller and larger interac
tion cutoffs. Further, we find that increasing the range
interactionRc from 0.95 to 2.1 reduces the magnitude ofRg
considerably, i.e., fromRg.3.824.2 to Rg.2.5022.75 at

FIG. 9. Bond length vs time for chains of lengthLc540 at
different p andT51.0, with Rc50.95 and 2.1.

TABLE I. Exponentg in Rg;Lc
g . Errors on the order;0.04.

Polymer concentration Temperature g
p T Rc52.1 Rc50.95

0.05 1.0 0.46 0.74
0.2 1.0 0.48 0.72
0.4 1.0 0.70
0.05 0.2 0.64 0.99
0.2 0.2 0.62 0.95
0.4 0.2
e
i-
t
re
or

-

m
ee

er

-

f

p50.05 and 0.40. LargeRc means long attractive interaction
between the chain nodes, which may correspond to a rel
tively poor quality of solvent for the chain environment. This
is consistent with the notion that the size of the chains de
creases~collapses! in poor solvent from their extended state
in a good solvent.

We evaluate the scaling exponent (g) for the variation of
Rg with the chain length (Lc),

Rg;Lc
g . ~7!

Figure 8 shows the variation ofRg with Lc on a log-log
scale. The slopes of the linear fit provide an estimate of th
exponentg ~see Table I!. At high temperature (T51.0), we
find g.1/2, i.e., a Gaussian conformation with the interac
tion rangeRc52.1. Chains seem to stretch a little withg
.0.63 at low temperature (T50.2) with Rc52.1 ~see Table
I! but still the chains conform to random configurations.
With the smaller interaction cutoff (Rc50.95), we findg
.0.71 ~closer to SAW estimate 3/4! at T51.0. However, at
low temperature (T50.2), g.1, i.e., chains are linearly ex-
tended~a rodlike conformation on a large scale! with the
smaller interaction cutoff. These quantitative measuremen
of the size of the chains are consistent with our visual in
spections of the snapshots.

A typical variation of the average bond length with time is
presented in Fig. 9. We see that it takes longer for bonds
relax with larger interaction cutoff (Rc52.1). The equilib-
rium bond lengtĥ l & depends on the range of interaction,^ l &
decreases from about 0.66 withRc50.95 to less than 0.60 at
p50.4. Further, we note that the lower the temperature, th
smaller the bond length.

D. Radial distribution

The radial distribution functionr(r ) is defined as the
number of monomers at a distancer 6dr from the center of
mass of the polymer chains. We evaluater(r ) in a relatively
large range (r ) for all parameters we have discussed above

FIG. 10. Variation of the radial distribution function with the
distance at different time steps forLc580 atp50.05, 0.2, 0.4 with
Rc52.1 andT50.2.
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57 5809DISCRETE-TO-CONTINUUM SIMULATION APPROACH . . .
A typical evolution ofr(r ) is shown in Fig. 10. We see tha
the peak of the distribution increases and the width redu
in time as the chains segregate into larger aggregates.

The equilibrium distribution function~i.e., the distribution
at the end of simulation averaged over independent runs! for
p50.05, 0.20, 0.40 atT50.2 is presented in Fig. 11. W
see that the width of the distribution decreases on increa
the polymer concentrations, i.e., the chains become close
form more compact aggregates at higherp. The width of the
distribution becomes wider with a relatively long tail wit
the lower range of interaction (Rc50.95). In order to see the
effect of temperature, we collected the data at low and h
temperatures atp50.4 in Fig. 12. We note that the mono
mers are relatively more dispersed at higher tempera
~longer tails in distribution!.

IV. SUMMARY AND CONCLUSION

A discrete-to-continuum hybrid method is presented,
ing the efficiency, simplicity, and importance of discrete a
continuum simulations to incorporate the appropriate det
of small and large scales. In the lattice frame of the h
space, we are able to place as many polymer chains a
like, i.e., chains with arbitrarily high concentration, which
not efficient and perhaps not feasible in a continuum be
spring model in a random sequential fashion. Even with
‘‘slithering snake’’ reptation algorithm alone we are able
prepare an intermediate initial sample with a relatively go
random distribution of chains with random SAW conform
tions using a large-scale athermal stirring. At high tempe
ture (T51.0), we observe segregation of chains and th
clustering with the cutoffRc52.1 of the LJ interaction while
there is no segregation with the smaller interaction cu
(Rc50.95). This is consistent with the expectation that po
mer chains do not mix as well in a relatively poor solve
~ascribed to dominant attractive interaction withRc52.1) as
in a relatively good solvent (Rc50.95). At low temperature
(T50.2), on the other hand, we observe a spectacular c
formational change to a folded-coil conformation in the lo

FIG. 11. Radial distribution function vs distance atp
50.05, 0.2, 0.4 forLc580 atT50.2 withRc52.1 ~open! and 0.95
~filled!.
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time regime; the amplitude of folding depends on the ran
of interaction, i.e., larger with a larger interaction cutoff.

During the conformational evolution of chains and the
segregation or phase separation process, we evaluate
power-law exponents (n1 ,n2) for the rms displacements o
the center of mass and their center node, respectively,
time, i.e.,Rc.m.;tn1,Rcn;tn2. We find that these exponent
are nonuniversal as they depend on temperature, i.e.n1

.0.40 (T51.0), 0.30 (T50.2) with Rc52.1, and n1

.0.45 (T51.0), 0.25 (T50.2) with Rc50.95 for Lc540
chains; these estimates are consistent with other c
lengths~i.e.,Lc580). Thus, the rms displacement of the ce
ter of mass of the chains is subdiffusive at low temperatu
The exponent (n2) for the center node of the chains als
depends on temperature, i.e.,n2.0.30 (T51.0), 0.10
(T50.2) and is nonuniversal. These power-law expone
seem to depend on the range of interaction as well, howe
our data is not good enough at present to confirm it conc
sively. We would like to point out that such nonunivers
power-law dependence of the rms displacement of chains
been also observed in different context such as chain
porous medium@15,22#.

The radius of gyration (Rg) is generally smaller with the
longer range of interaction. The scaling exponentg(Rg

;Lc
g) exhibits a Gaussian conformation withRc52.1 and

extended~SAW! conformation withRc50.95, a relatively
good solvent condition. A similar trend is also observed
the average bond lengtĥl &, which is longer withRc50.95
than that withRc52.1, a relatively poor solvent condition.
Radial distribution of monomers~beads! is examined in de-
tail. The variation of the magnitude of the peak of the dist
bution and its width with temperature and the upper inter
tion cutoff is consistent with the above observation, i.
segregation withRc52.1, desegregation withRc50.95 at
high temperature (T51.0), change from a random confo
mation to a chain folding, etc. We hope to develop and refi
this approach further to address more complex issues
polymeric systems.

FIG. 12. Radial distribution function vs distance atT50.2 and
1.0 for Lc580 atp50.4 with Rc52.1 ~open! and 0.95~filled!.



n
er

er-
nd

ippi

5810 57GRACE M. FOO AND R. B. PANDEY
ACKNOWLEDGMENTS

We acknowledge support from a NSF-EPSCoR gra
Simulations were performed at the CADCAM center, Sup
computing and Visualization lab, and on theLinux cluster at
er

s

d

t.
-

the Department of Computational Science, National Univ
sity of Singapore. Initial stage of program development a
test runs with small samples were done at the Mississ
Center for Supercomputing Research.
ett.

.

-

s.
@1# M. P. Allen and D. J. Tildesley,Computer Simulation of
Liquids ~Clarendon Press, Oxford, 1996!.

@2# D. Frenkel and B. Smit,Understanding Molecular Simulation
~Academic Press, New York, 1996!.

@3# J. M. Haile,Molecular Dynamics Simulation~John Wiley and
Sons, New York, 1992!.

@4# H. Gould and J. Tobochnik,An Introduction to Computer
Simulation Methods~Addison-Wesley, New York, 1996!.

@5# Monte Carlo and Molecular Dynamics Simulations in Polym
Science, edited by K. Binder~Oxford University Press, Ox-
ford, 1995!.

@6# Computational Modeling of Polymers, edited by J. Bicerano
~Marcel Dekker, New York, 1992!.

@7# P. G. de Gennes,Scaling Concepts in Polymer Physics~Cor-
nell University, Ithaca, NY, 1979!.

@8# M. Doi and S. F. Edwards,The Theory of Polymer Dynamic
~Clarendon, Oxford, 1986!.

@9# A. Baumgaertner, inThe Monte Carlo Methods in Condense
Matter Physics, edited by K. Binder~Springer-Verlag, New
York, 1995!.

@10# H. Wendel and J. Noolandi, Macromolecules24, 1313~1982!.
@11# R. J. Needs, Macromolecules17, 437 ~1984!.
@12# J. M. Deutsch, Phys. Rev. Lett.54, 56 ~1985!.
@13# K. Kremer, G. S. Grest, and I. Carmesin, Phys. Rev. Lett.61,

566 ~1988!.
@14# U. Ebert, A. Baumgaertner, and L. Schaefer, Phys. Rev. L

78, 1592~1997!.
@15# V. Yamakov, D. Stauffer, A. Milchev, G. M. Foo, and R. B

Pandey, Phys. Rev. Lett.79, 2356~1997!.
@16# P. E. Rouse, J. Chem. Phys.21, 1273~1953!.
@17# P. H. Verdier and W. H. Stockmayer, J. Chem. Phys.36, 227

~1962!.
@18# F. T. Wall and F. Mandel, J. Chem. Phys.63, 4592~1975!.
@19# S. Caracciolo and D. A. Sokal, J. Phys. A20, 2569~1987!.
@20# A. Sokal, in Monte Carlo and Molecular Dynamics Simula

tions in Polymer Science~Ref. @5#!, p. 47.
@21# I. Gerroff, A. Milchev, K. Binder, and W. Paul, J. Chem. Phy

98, 6526~1993!.
@22# G. M. Foo, R. B. Pandey, and D. Stauffer, Phys. Rev. E53,

5738 ~1996!; G. M. Foo and R. B. Pandey,ibid. 55, 4433
~1997!.


